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Abstract
Here we propose an experiment in linear optical quantum computing (LOQC) using the
framework first developed by Knill, Laflamme and Milburn. This experiment will test the
ideas of the authors’ previous work on imperfect LOQC gates using number-resolving photon
detectors. We suggest a relatively simple physical apparatus capable of producing CZ gates
with controllable fidelity less than 1 and success rates higher than the current theoretical
maximum (S = 2/27) for perfect fidelity. These experimental setups are within the reach of
many experimental groups and would provide an interesting experiment in photonic quantum
computing.

1. Introduction

Optics remains one of the most promising methods for
quantum information processing and computing, due to long
photon coherence times, the ease of photon manipulation, and
the ability to transmit quantum state information over very
large distances. Optical states have also been proposed as
possible buses between matter qubits [1, 2]. It is therefore
desirable to be able to manipulate states at the single-photon
level via gate implementation. Knill, Laflamme and Milburn
(KLM) significantly advanced the prospect of single-photon
quantum computing in their seminal paper [3], in which
they overcame the need for nonlinear interactions by using
the inherent nonlinearity of photon measurements. In this
scheme, the computational system is combined with ancillary
modes, and the gate operation is performed on the enlarged
state space. The ancilla modes are measured with photon-
number-resolving detectors, leaving the computational modes
undisturbed and in the desired output state provided the
measurement is successful. For details of LOQC see the
review by Kok et al [4] and for implementations of the CNOT
gate discussed below see [5]. In our previous work [6–8],
the authors have shown that a combination of analytical and
numerical techniques may be used to design optimal linear
optical transformations implementing two- and three-qubit

entangling gates. Here we show results for non-ideal gates
and suggest an experiment to test them.

The probabilistic nature of quantum measurement implies
a natural trade-off between the success rate of the operation
(the probability of obtaining the desired measurement outcome
for the ancillary modes) and the fidelity (the overlap between
the actual and desired states of the computational system
when the ancilla measurement is successful). Previously,
solutions were obtained that have the maximum possible
ancilla measurement success probability given the constraint
of perfect fidelity for a specified transformation [6, 7].
In practical implementations, however, the goal of perfect
fidelity will never be attainable. In addition, fault tolerant
LOQC allows for imperfect fidelity gates to be used while
maintaining the accuracy of the overall calculation [9]. We
have therefore generalized our previous techniques to the case
of imperfect fidelity, and investigated the above-mentioned
trade-off between the fidelity and success of the linear
optical transformations. It was found that for sufficiently
small deviations from perfect fidelity, a single optimization
parameter determines the relationship between fidelity and the
optimal success rate [8].

In section 2 of this work we briefly describe the theory
behind our proposed experiment. In section 3 we describe
a simple experimental apparatus capable of producing CZ
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Figure 1. A scheme for an LOQC transformation or a quantum state
generator [6]. The computational input state is a separable state of
two or more dual-rail encoded qubits. The ancilla state may be
separable or entangled and is projectively measured via multiple
coincidence photo-counting after the LOQC operation is complete.
The linear optical device can be any physical set-up.

gates with varying fidelity and success rates. In section 4
we summarize the experimental requirements and provide
concluding remarks.

2. Theory

The input state to the experiment |�comp
in 〉 × |�ancilla〉 is a

product of the computational state containing Mc photons in Nc

modes, and an ancilla state containing Ma photons in Na modes.
The Nc computational modes are those on which the actual gate
is intended to act. Assuming dual-rail encoding, each qubit is
represented by one and only one photon in two computational
modes, so we have Mc = Nc/2. This is the fundamental
resource for the experiment and in the case of the two-
qubit gates described below consists of only two unentangled
photons in four modes. The logical states | ↑〉 and | ↓〉 are
represented by |11, 02〉 and |01, 12〉, respectively; thus as an
example the state |1, 0, 1, 0〉 is the computationally valid state
|↑1↑2〉. Such photons can be created by standard spontaneous
parametric down conversion methods [10], heralding photons
[11], the Schioedtei source [12], or from other standard
techniques such as attenuated laser pulses [13]. The ancilla
state may in general be separable, entangled, or an ebit state
carrying spatially distributed entanglement [5, 14], though
here we propose using only a product state of single-photon
and zero-photon ancillas, which can be produced in the same
fashion as the computational state photons. We also allow for
an arbitrary number Nv of vacuum input modes. A diagram of
a LOQC device is shown in figure 1.

The linear optical device in figure 1 transforms the
creation operator a(in)†

i associated with each input mode i
to a sum of creation operators

∑
j Ui, ja

(out)†
j . Here U , which

contains all physical properties of the device, is an N × N
matrix, where N = Nc + Na is the total number of modes.
The total input state may be written as a superposition of Fock
states |�in〉 = |n1, n2, . . . , nN〉, where ni is the occupation
number of the ith input mode, and

∑
ni = Mc + Ma = M is

the total number of photons. The input state is transformed as

|�out〉 = �̂|�in〉 =
N∏

i=1

1√
ni!

⎛
⎝

N∑
j=1

Ui, ja
(out)†
j

⎞
⎠

ni

|0〉. (1)

We note that �̂ is a multivariate polynomial of degree M in the
elements Ui, j.

Once the transformation is complete, a measurement is
applied to the Na ancillary modes. In the case of a number-
resolving photon-counting measurement, 〈�measured| =
〈kNc+1, kNc+2, . . . , kN |, where ki is the number of photons
measured in the ith mode of the ancilla. The resulting
transformation of the computational state is a contraction
quantum map |�comp

out 〉 = Â|�comp
in 〉/‖Â|�comp

in 〉‖ [15], where
Â = Â(U ) is defined by

Â|�comp
in 〉 = 〈kNc+1, kNc+2, . . . , kN |�̂|�in〉 . (2)

The linear operator Â, which maps computational input states
to computational output states, contains all the information of
relevance to the transformation.

We define the fidelity as the probability that the desired
target gate ÂTar has been faithfully implemented on the
computational modes given a successful measurement of the
ancilla modes:

F(Â) = |TrÂ†ÂTar|2
2Mc TrÂ†Â

, (3)

since TrÂTar†ÂTar = 2Mc for a properly normalized target
gate. We note that Â maps the 2Mc -dimensional space of valid
computational input states (containing exactly one photon in
each pair of modes) into the larger

(
(Mc+Nc−1)!
Mc!(Nc−1)!

)
-dimensional

space of Mc photons in Nc modes, and a non-zero probability
for ending up outside the valid computational space necessarily
leads to a reduction in fidelity. As we are interested in
deviations from perfect fidelity, we define δ ≡ 1 − F as our
main parameter [8].

A successful event is that in which the ancilla output
measurement gives the desired result after the LOQC
transformation is complete, see figure 1. In the case of CZ,
this output is the |1, 1〉 ancilla state [3, 6]. The success rate of
the ancilla measurement is given by an average of the success
over all computational input states,

S(Â) = Tr(Â†Â)/2Mc‖U‖2M (4)

for general complex U . Note that U need not be unitary,
as any matrix can be made unitary via the unitary dilation
technique by adding vacuum modes [7, 16]. We also note that
the Hilbert–Schmidt norm 〈Â|Â〉 = Tr(Â†Â)/2Mc , used in our
definition of S, is bounded above by the square of the operator
norm, ‖Â‖2 ≡ (‖Â‖Max)2 = Max(〈�comp

in |Â†Â|�comp
in 〉), and

below by (‖Â‖min)2 = Min(〈�comp
in |Â†Â|�comp

in 〉), where
the maximum and minimum are taken over the set of
properly normalized input states. In the limit F → 1,
‖Â‖Min/‖Â‖Max → 1, and all definitions of the success rate
coincide.

The optimization method we have developed maximizes
the success probability S for a given target transformation
ÂTar, for set ancilla resources, and for a given fidelity level
F � 1. We performed an unconstrained local maximization
of the function S + F/ε in the space of all matrices U ,
where 1/ε is a Lagrange multiplier. This was performed in
Mathematica with a BFGS quasi-Newton method. The process
is repeated with multiple random starting points where several
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Figure 2. Improved success rates for compromised δ. Numerical
results show the maximal success rate S versus δ for the CZ gate,
and the curve is a best fit to the theoretical form (5). Each data point
corresponds to a distinct linear optical transformation, given by a
unitary matrix.

locally optimal families of solutions exist, to obtain the global
maximum. Here ε → 0+ corresponds to maximizing the
success probability while requiring high fidelity (F = 1). As
ε is increased, the maximum of S + F/ε yields linear optics
transformations that maximize the success S as a function of
the fidelity F . Given one transformation U that (locally or
globally) maximizes success S for a given fidelity F , ε may
be continuously varied to obtain a one-parameter family of
optimal transformations, tracing out a curve in success-fidelity
space around that maximum. In general the members of these
families need not be all unitary, however for some gates of
interest, including the CZ gate, all members of the family are
unitary.

Figure 2 shows optimal results for the CZ gate. Here each
point corresponds to a unique unitary mode transformation U .
As previously reported we find an interesting feature of these
unitary matrices. The optimal solution with fidelity F = 1 was
found by Knill to have a surprising form [16], which we have
dubbed the ‘Knill form’ [7], where one mode of each qubit
is non-interacting, e.g., in the CZ case U acts as the identity
on modes 1 and 3 (or equivalently 1 and 4, 2 and 3, or 2 and
4). This form has been found to hold for the CZ gate and for
the TS Toffoli Sign gate (CNOT and Toffoli respectively are
equivalent to these up to local rotations).

We fit the data for the CZ gate to the known general
analytic form [8],

S(F ) = S0 + S1(1 − F )1/2 + S2(1 − F ) + · · · , (5)

and truncate to

S(δ) = 0.074 + 0.076 δ1/2 . (6)

When F = 1, δ = 0 and the success S reduces to the
2/27 ≈ 0.074 result found by Knill [16], which has been
confirmed numerically by the authors [6]. The ratio S1/S0 =
1.03 ± .03 contains the most interesting information about
the system, as it is a measure of the relative rate of increase
in success as the fidelity is compromised. We have used this

ratio previously to compare the behaviour of several gates,
namely CNOT, CS(90), and the B gate [8]. All of these could
be tested by the experimental apparatus proposed here, with
some modifications.

3. Experimental design

We now propose an experiment that will test the results shown
in figure 2. Reck et al have shown that any discrete N × N
unitary transformation U can be implemented as a multi-port
device consisting only of variable transmittance beamsplitters
and phase shifters [17]. Their method is a decomposition
in which each unitary matrix element below the diagonal is
transformed into zero by a 2 × 2 rotation matrix embedded in
an N × N matrix which is otherwise equal to the identity. For
example, the 2 × 2 rotation acting on modes N and N − 1,
which eliminates the element UN,N−1, takes the form

TN,N−1 =

⎛
⎜⎝

1 . . . . . . 0
...

. . . eiφ sin(ω) eiφ cos(ω)

0 . . . cos(ω) − sin(ω)

⎞
⎟⎠ . (7)

The method is recursive and requires one iteration for each
pair of modes. Finally, we obtain

U (N)TN,N−1TN,N−2 · · · T2,1D = I, (8)

where D is a diagonal matrix of phases. The desired
transformation U is then decomposable as

U (N) = D−1T −1
2,1 T −1

3,1 · · · T −1
N,N−1. (9)

Physically, each 2×2 transformation T −1
i, j is implemented as a

variable transmittance beamsplitter with a phase plate on one
input mode, while D−1 corresponds physically to a phase shift
on each output mode [17].

Thus a generic two-qubit operation, which needs at
least N = 7 modes (Nc = 4 computational modes and
Na = 3 ancillas) requires a minimum of 21 beamsplitters and
28 phase shifters. A controlled unitary gate (N = Nc + Na =
4 + 2 = 6) requires at least 15 beamsplitters and 21 phase
shifters. If unitary dilation is required (as is often the case) the
number of optical elements increases rapidly. However our
experiment does not require unitary dilation and furthermore
as noted by Reck et al , if an element of the unitary matrix is
already zero, then no transformation is required. The element is
skipped.

Here we return to the ‘Knill form’, where in the case
of CZ we find that nine of the elements below the diagonal
are already zero. Therefore the unitary transform can be
implemented with only six beamsplitters and ten phase
shifters. We can perform this decomposition for each data
point in figure 2, and find the rotation angles ωi, j and phases
φi, j in each case. We find numerically that all of the phase
shifts, φi, j, are constant along the entire length of the curve
in figure 2. As we are working in the photon number basis, it
is reasonable that phase shifts would have no effect. Thus,
we find that only the six beamsplitter rotation angles ωi, j

out of a total of 36 possible variables need to be modified
to vary δ, making the experiment much more physically
realizable. To be specific, the transformation only requires
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Figure 3. Beamsplitter rotation angles. Numerical results showing the six beamsplitter rotation angles ωi, j versus δ for the CZ gate.

Figure 4. General seven-mode optical device for two-qubit gates. A schematic depiction of a multi-port optical device capable of
performing our experiment as well as implementing any generic SU (4) transformation in the measurement-assisted KLM scheme [17].

beamsplitters acting on the following mode pairs: (i, j) =
(6, 5), (6, 4), (6, 2), (5, 4), (5, 2), (4, 2). Figure 3 shows
that the six beamsplitter rotation angles change smoothly with
δ. Implementing such rotations and constant phase shifters will
recreate the unitary matrices from figure 2.

This system lends itself to being implemented with 2 × 2
Mach–Zehnder interferometers (MZI) in place of standard
beamsplitters. The transmittance of the MZI is controlled
dynamically by adjusting the phase difference, without having
to alter the physical system. These interferometers have
already been put on optical chips by Thompson et al [18]
among others. Indeed, significantly larger electro-optical
matrix switches have been proposed and built for broadband
optical communication networks [18, 19].

Figure 4 shows a multi-port device that mixes seven
input/output modes (thin lines) using 2 × 2 variable
transmittance beamsplitters (rectangles), each of which has a
phase shifter on one of its input modes (ellipses). An additional
phase shifter is placed on each device output mode. The thick

line is a simple mirror. O’Brien recently proposed a similar
7×7 single-chip MZI-based device made from lithium niobate
waveguides [18]. The intended purpose of this chip was to
be able to perform any two-qubit unitary operation, i.e. any
transformation in SU (4). However, such a device would also
be capable of performing the experiment described above.

Physical realization of work such as this can occur
in many different experimental configurations. A bulk
optical component configuration allows the greatest flexibility
in system reconfiguration. The components required to
construct this system are readily available at fairly low cost.
Unfortunately the system suffers from a large and badly scaling
footprint size, thermal instabilities and misalignment issues.

The next logical step would be to implement this system
in optical-fibre-based components, thus alleviating the need
for critical alignment and reducing the overall footprint
size. Fibre allows for a reconfigurable system with properly
connectorized components and drastically reduces the setup
time for this experimental configuration. The fibre-based

4
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components required for this experiment are also all readily
available. The phase shifters can be implemented in a manual
stress-induced fibre phase shifter or a lithium niobate phase
modulator. The variable transmittance beamsplitters can be
replaced with 2 × 2 evanescent couplers whose output port
transmittance can be changed by manual adjustment of the
gap between the fibres. The tuning of these devices is slow;
most are manually tuned and would require simultaneous
tuning across the entire circuit. Another possible component
configuration consists of fibre-coupled bulk beamsplitters
arranged to form a Mach–Zehnder interferometer with a
lithium niobate phase shifter inserted into one of the arms.
This would allow for high-speed and remote tuning of the
transmittance. Lastly, the beamsplitter could be implemented
with a single device, a 2 × 2 lithium niobate MZI. This device
allows for the highest-speed reconfiguration and transmittance
tuning of any of these possible suggested configurations. The
respective transmittance set for any particular MZI must be
monitored due to the thermal drift of the chip and the effect is
amplified due to the modulator’s sinusoidal transfer function.
Many commercial MZI’s address this problem with thermal
stabilization of the chip and output power monitoring via an
integrated photodetector.

However, fibre does pose a number of other challenges
in a configuration such as this. Polarization mode dispersion
(PMD) occurring from random imperfections and asymmetries
can lead to phase variations and these would need to
be compensated for with the installation of a polarization
controller. PMD can be negated at the cost of accepting slightly
higher fibre loss with the use of polarization-maintaining
(strongly birefringent) fibres, in which the polarization is
confined to one transmission plane. The other related issue
to be aware of is polarization-dependent loss, again due to
asymmetries, where one polarization experiences a higher
loss rate. Both of these effects can lead to transmittance
differences through the interferometers in the experiment.
Thermal expansion can also induce phase variations in the
fibre-based interferometers. This can be actively compensated
for with the addition of a Pound–Drever–Hall type feedback
scheme, at the cost of increased system complexity [20].
Lastly, connector interfaces between components can lead to
photon loss and state degradation.

The ideal implementation would be a monolithic
integrated circuit, which has a minimal footprint and provides
greatest control of thermal stability. There are a number of
choices of material (silica, silicon, lithium niobate, etc), but
the final decision depends on the wavelength of interest,
photon detection capabilities, and the intended function of the
circuit. For example, silica will have lowest loss for passive
waveguides in the telecom regime, but active devices in silica
must be thermal and are therefore slow [21]. Lithium niobate
will have slightly higher loss waveguides than silica in the
telecom regime, but it is far superior for active components
such as modulators due to its nonlinear properties.

Initial circuits including photon sources, waveguides, and
detectors may have to be built on multiple chips, each with its
own respective components that are best suited for being mated
together and then eventually merged onto one monolithic

chip. Regardless of the chosen material, integrated waveguides
allow movement towards scalable photon circuits [18].

Photon detection is the final piece of the puzzle. Standard
avalanche photodiodes used with the detectors at 1550 nm
have a higher noise than those at 800 nm, and neither are
capable of photon-number resolution. A second option is to use
superconducting single-photon detectors, e.g. niobium nitride
nanowire detectors [22], which can be configured to be capable
of photon number resolution. The third option is to employ
transition-edge detectors, which have demonstrated some of
the highest number-resolving system detection efficiencies to
date, at 98% [23].

4. Conclusion

We have shown the theoretical basis and interest for this
experiment. At this time it is the only apparent means
of experimentally confirming the key ratio S1/S0, which
quantifies the trade-off between fidelity and success, for the
CZ or CNOT gate. The experimental setup may naturally be
extended to explore the behaviour of other quantum gates
of interest. The components needed for the execution of the
experiment are well within the means of many experimental
groups. The main stumbling block is the expense of purchasing
number-resolving detectors. However, any group already
possessing these detectors should be able to implement this
scheme with relative ease.
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